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Quantum effects in the evolution of vortices in the electromagnetic field
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We analyze the influence of electron-positron pairs creation on the motion of vortex lines in electromagnetic
field. In our approach the electric and magnetic fields satisfy nonlinear equations derived from the Euler-
Heisenberg effective Lagrangian. We show that these nonlinearities may change the evolution of vortices.

DOI: 10.1103/PhysReVE.69.066616 PACS nun)er03.50.De, 67.40.Vs, 11.10.Lm, 11.2d

[. INTRODUCTION netic fields. In order to construct the position and time de-
) i ) endent wave function, we still need the classical equations
The phenomena of creation and evolution of vortices haVé)or electric and magnetic fields. These equations are no
always attracted attention both in the past and in the presenpnger linear since pairs creation leads to the photon-photon
In contemporary physics they gained particular interest sinCgyteraction and Maxwell equations are suplemented by addi-
having been experimentally observed in Bose-Einstein contional terms which, in the lowest approximation, are cubic in
densategl-4]. Vortices in superfluids, due to the absence offields and quadratic in the fine-structure constamgeneral
viscosity, exhibit certain unconventional features like thethey might be also nonlocal Although the correction is
persistence of the whirl or its singular nature. The Bosesmall it can certainly influence the motion of the vortex lines
Einstein condensate may be described by the nonlineand particularly change their topology.
Schrodinger equatiofthe Gross-Pitaevskii equatidib—7]) One should mention here that there exists also another
satisfied by a certain macroscopic wave function. In that wayype of quantum effects — which remain beyond the concern
one has been led to studying vortices in quantum mechanic® the present work — connected not with #fe” content of
(QM). There is a striking resemblance between the dynamic_Ehe vacuum, but with fluctuations of the electromagnetic fie!d
of fluids and QM via the hydrodynamic formulation of the itself. These effects, due to the nonzero vacuum expectation
latter [8]. QM can, even in the linear version, serve as avalue of billinears in fields, lead to the smoothing of the
model theory for investigating the behavior of vortices in vortex core(i.e., the line on which both invariants are equal

superfluids. Such studies, concerned with the dynamical g9 28r9- In this case the core is no more singular. It is de-
b y ined not by the conditiofr?=0, which is not satisfied, but

well as topological aspects of vortex evolution in various 5 5 5
configuations, both in_nonlineafs-18 and in linear 4L F =0, piee it e Clse e
[19-23 cases, have recently been undertaken. Secs. Il and Il P

Together with the attention paid to nonrelativistic QM, the
singular solutions in other field theories such as electromagl:a
netism, for instance, have been investiggd®t-298. We will

As a starting point we choose the Euler-Heisenli&iig)
grangian[31,32 describing, in the lowest order, the dy-
namics of classical electromagnetic fields with vacuum po-

be concerned with this question also in the present Papef, ff ken i Field . btained
While considering vortices in fields corresponding to spin- arization effects taken into account. Field equations obtaine
from this effective theory in Sec. Il exhibit solutions contain-

ning particles one encounters the problem that the Wave_f_unmg vortex lines, the evolution of which may be viewed and
cion has more than one component and the condition . ;
_ . . -compared to that obtained from the classical Maxwell equa-
Y(r,1)=0, leads to too many equations which cannot be si-; :
tions. In this work we analyze two such cases. Both are cho-

"sen from Ref[27] to make the comparison of the results in

4 . - . our works very easy. Our results are presented in Sec. Il
vortex lines were defined by the null values of two relativis- 4 Y P

tic invariants:S and P. Th W tions mean tw ; The main practical problem in this investigation comes
¢ invariants.o a - 'hese two equations mea O SU” from the fact that guantum corrections are, in general, small

faces in the three-dimensional space. Their intersection i0d it is very hard to see them on a drawing. The choice of
genlt(eral T;f.‘y be a cua;v— a vortex line. We will base our examples considered in our work from among those of Ref.
work-on this approach. [27] is dictated just by the criterion of quantum effects being

In the present wo_rk we would I|ke_to investigate hQW visible. It is clear that they are noticeable not by analyzing or
quantum effects can influence the motion of the nodal I|ne§neasuring the precise shape of a vortex line — the slight

of the electromagnetic wave functigad). The term “quan- deviation of which from that obtained in classical theory

tum’ is used here in the field theoretical sense: Maxw.e"surely does occur — but rather by observing “to be or not to
electrodynamics, as well as Schrddinger wave mechanlc%e,, effects or topological ones

ahre clf?ssmalj frlom that p0|.nt of VIEW. We V\."" cpnC(Iantrate ON There are two limitations which cause some of the results
the effect of electron-positron pairs creation in electromagy¢ s work to be qualitative rather than quantitative. First,
they are obtained within perturbative regime. This regime
means that the electromagnetic field may not be too strong
*Electronic address: torado@fuw.edu.pl and its strength is limited by the condition efF|?/m* being

for electromagnetic field was proposed in Rgf7], where
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small. Fields considered here are polynomial, so this require- 2 8a 2

ment means that the evolution should not go beyond a cer- D(r.t) = {1 + 45m4S(r,t)]E(r,t) + 4an4P(r,t)B(r,t).

tain limited space-time region. However, close to the vortex

line, similarly to the situation in the Gross-Pitaevskii equa- (5)

tion, the terms quadratic i§ and P in the Hamiltonian(9)  Thjs kind of equation usually bears the name of a consti-

become small, even for large values of electromagnetigytive equation. It reflects the nontrivial structure of the me-

fields, and perturbative calculation is again well justified. _ dium. In the present case this medium is the quantum field
Secondly, we have to remember that the EH Lagrangiafeory vacuum with its polarizability via electron-positron

describes only slowly varying fields, for which the nonlocal- yairs creation and anihilation. We now need to invert this

ity may be neglected. Their relative change at a distance ofqyation and express velociE/in terms of canonical vari-

the Compton wavelength of the electron should be small. Iy51esD andB. Since our initial Lagrangia) is given only

view of that the EH effective Lagrangian is treated in ourj, gne loop approximatioti 2) then our further calculations

work as a certain nonlinear model of the true theory of elec—may be led up to this order too. We can therefore postulate

tromagnetic fields obtained from QED without real chargesE(r t) in the form
Another interesting model in this context constitutes the '

Born-Infeld electrodynamicg33]. One should, however, E(r,t) =[1+a 2K(r,t)]D(r,t) + a 2M(r,0)B(r,t), (6)
have in mind that even small corrections, coming from weak
fields, can change the topology of vortices. where quantitiesC(r,t) and M(r,t) are to be determined.
Substituting Eq.(6) into Eqg. (5), neglecting terms of the
IIl. FIELD EQUATIONS order higher thanv?, and comparing coefficients multiply-

ing vectorsD andB we find
The Euler-Heisenberg Lagrangiai81,32, which ac-
counts for the vacuum polarization processes in the lowest 16

approximation has the following form: K(r,H=- 45m4[D(r,t)2 -B(r,b7, (7a)
L(rt)=8(r,t)+ 20° [4S(r,t)2+ 7P(r,t)?], (1) 28
45m* M) === —D(r.D -B(r,D. (7b)

whereS andP denote the two Poincaré invariants formed of

electromagnetic fields, The Hamiltonian density may be now found as

S§=-(E*-B%, P=E-B, (2 , _ .
2 whereE in the whole above expression should be eliminated

i in favor of D andB, according to the relation®) and(7a).
and « and m are fine-structure constant and electron Massthe explicit form ofH is then

recpectively. The canonical variables are electric and mag-

netic inductiondD andB, where the former plays the role of 1 202
canonical momentum and the latter of positi88,34. In H(r,t) = E[D(r,t)2+ B(r,t)?] - 45m4[D(r,t)2—B(r,t)2]2
this picture the electric field strengkhin the Lagrangiarnil)
corresponds to the velocity. The field equations that we will 14a? )
need for our purpose are the canonical Hamilton equations - 45m4[D(r,t) -B(r,H]°. 9)
R &H r,t . -y . B -
D(rt)= V x ( ), (33 Now we are in a position to write down equatiof® in an
dB(r,t) explicit form,
AH(r,t) D(r,t)= V X {B(r t)[1+ 8a2[D(r )2 - B(r t)2]]
: r, 1) = . )= B(r,
B(r,)=-V X , (3b) 45m’*
aD(r,t)
28a 2
where H(r,t) denotes the Hamiltonian density. To find the - 45m4D(r,t)[D(r,t) Byl (108
explicit form of Eqgs.(3) we have to perform the Legendre
transform and pass fromf to H. The canonical momentum 82
is, as always, defined as a derivative of the Lagrangian over B(r,)=- V X {D(r,t){l _oa _[D(r,1)2- B(r,t)z]]
velocity, 45m
80(2
aL(r,t)y dL(r1) dL(r,t) - B(r,t)[D(r,t) - B(r,t)] (. (10b)
D(r,t) = = E(r,t) + B(r,t), (4 45m?
.y JE(r,t) a8(r,t) .y dP(r,1) o, 4
Introducing two complex vectors,(r,t) according to the
which gives relation
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1 _ and what is more, the nonlinear one. Already in the linear
Fi(r,t):TE[D(r,t)mB(r,t)], (1) (but inhomogeneoysmedium one is forced to define the
v wave function as an extention &f through the introduction
we can rewrite Eq.10) in the form of upper and lower componenig9] defined by Eq(11),

2

: _ 2ia (F+(r,t)>
F.r,t)y==iV XF(rt)+ v Flr,t)= . (19

45m’* F_(r,t)
X A{F_(r,O[11F,(r,H)2 = 3F_(r,))%]}, (123 This allows one to give the set of coupled equations the form
of one, linear, Schrédinger-type equation for the wave func-
: _ Dia? tion F(r,t). In the quantum case the linearity is inevitably
F(r) =iV XF_(rt)+ a5 Y lost, but the definition of vortex lines, by the requirements
S(r,t)=0 and P(r,t)=0, seems to be universéollowing
X AP (rO[11F_(r,H% = 3F,(r,H)?]}. (12b)  Ref. [27] this kind of singular lines has recently been called
“Riemann-Silberstein” vortice$35,3q). Therefore, in the
IfuII analogy with Ref.[27], we choose as a basic object the

In the classical case the right hand sides of Etj8g and
(12b) reduce to the first terms only and the two equations fo .
F, decouple from each other. This is not the case in théuantity
presence of a nonlinear medium. 1

The evolution takes place in an empty space, without real Fi= E(Dz— B2 +iD - B. (15)
charges, sé-.(r,t) have to satisfy the conditions

V F.(r,0)=0. (13)

By applying gradient to both sides of Eq42g and(12b) it
can easily be seen th&t-F.(r,t) are constant in time and it
is sufficient to impose the conditiori$3) at timet=0.

The condition F,(r,t)>=0 is naturally equivalent to the
choiceF_(r,t)2=0.

A. Vortex ring

The first configuration considered in R¢27] is defined
I1l. EVOLUTION OF EXEMPLARY VORTICES by

In the present section we would like to show how quan- f@(r,t)=(y+it,z-a+i@+t),x+it). (16)
tum effects connected with pairs creation influence the evo- This “wave function” satisfies the Maxwell equations and
lution Of. vortiges in the elect_romagnet.ic field_. From amoNng jescribes the evolution of a single vortex in the form of a
the configurations of vortex lines considered in Hew] we . swinging ring with varying radius. In order to see in an easy
Vvay how quantungnonlineay terms in Eqs(12a and(12b)
Ynfluence this evolution, we will choose the solutiBr(r,t)
of Egs. (129 and(12b) which is identical to Eq(16) at t
=0. This solution(up to a ?) has the form

be done and the effects are clearly visible. They are the sit
ations presented in Figs. 1 and 2 of Rgf7]: the motion of
the vortex ring and the creation and further evolution of ini-
tially linear vortex-antivortex configuration, i.e., two vortices
of opposite whirl. FOr)=f@r, ) +t3-ar) +t2- Br) +t- ¢1r),
Vortex lines in quantum mechanics are usually defined by (17)
the behavior of the wave function of the system. In hydro-
dynamics vortices appear in the regions of space wher@here vector funtionse(r), B(r), and ¢(r) are given by
V Xw(r,t)#0, whereuv(r,t) is the local fluid velocity. In 5
QM, in its hydrodynamic formulatiori2], the role of the alr)= - 128« (1.1, (183
fluid is played by the distrubution of probability. The veloc- 135m*
ity field, being proportional to the gradient of the phase of

the wave function, can have nonvanishing curl only where 8a2/1 2 i 2
this phase is singular. This in turn means the vanishing of the B(r) = —4(‘(2— a)-zy-saz(@a-2
> =R . . ; 3m*\3 5 35
wave function, i.e., the simultaneous vanishing of its real and
imaginary parts. In that way we are led to the conclusion 1 i 2 1
that, in general, vortices have the character of the curves XT3 TEX Y (18b)
(evolving in time costituting the intersection of two surfaces
defined by the requirement(r,t)=0. 8a 2/ 2 i
As it was proposed in Refl27] one can introduce in y(r):—4<—a(z—a)——(11a2—12az+ 622),
electrodynamics, in place af, a similar object, the vanish- 3m*\3 15
ing of which may serve as the definition for the vortex lines. 2i 2i
This object is F(r,t)2, where F(r,t)=(1/\2)[D(r,t) - EXZ,— €y2>- (180

+iB(r,t)]. As argued 29], the quantityF is worthy of being
called a “photon wave function.” In the case considered in In Fig. 1 we show the evolution of the vortex line consti-
the present work, photons move in the polarizable mediumtuting the intersection of two surfaces H-‘\ﬂé?(r,t)zzo and
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FIG. 2. The evolution of the vortex ring for larger times: from
t=1.5tot=99.3. The first frame is identical to the last one of Fig. 1,

FIG. 1. The evolution of the vortex ring starting fram-1.8 to but now the scale of the axes is modified to —00,y,z< 100
t=1.5. The scale on the axes is such that the frame covers the region ' '

—-4<X,y,z<4. . . .
The above function was shown to describe the configura-

. , tion of two vortices which initially are antiparallel straight
(@ 2 (a)
Im F.7(r,9°=0 with F.7(r, t) defined by Eqs(17) and(18).  jines we call them vortex and antivortexThey are born at

For simplicity both parametera andm are set equal 10 (=5 and then they separate and deform. The solution of Eq.
unity on this, as well as on the following plots. The evolut|0n(126) which is identical tof ® att=0 has(again up toa 2)
extends in time from=-1.8 tot=1.5 and exhibits identical ne form similar to Eq(17)

character to that of Ref27]: the swinging vortex ring, pre-

serving its circular character, decreases to a certain minimal FOUE ) =f O, ) +t3- alr) +2- BIr) +t-4(r), (21)
value of radius, and then starts to increase. Quantum effects

do not manifest themselves in this domain of space and time,; now with

In the classical case, hovever, the expansion of a ring will

last forever, which can easily be seen from the two equations 8 2 ( 17i 1‘ﬁ>
[ in Ref.[2 =- 2,—,— |, 22

given in Ref.[27], a(r) Torf 9 9 (22a

X*+y?+(z-a)?-a’-2at-3t%=0, (193

2az+ 2t(x+y+z—-a)-2a“=0 (19b) B(r) = 8a® (2(2— +a)+5—ia §(x—a)
Y e T\ ST 3%3

The former represents the sphere of a fixed center in the
point (0,0,a) and of constantly increasing radig®r posi- +2i(z+a),- 2x+ 2iy>, (22b)
tive t). The latter, rewritten in the formx+y+(1l+a/t)z

=a(l+a/lt), tends to the motionless plame y+z=a passing
through the center of the sphere. Their intersection will 8a2 /11 , 10i P
surely be the expanding ring. As we see in Fig. 2, this ceasesy(r) = - 15m4<3a +daz+ 272 + ?a(z+ a),2ix <, 2y )
to be true in the quantum case.

Due to the nonlinearity introduced by quantum effects (229
two new phenomena appear. First, the vortex ring starts to
deviate, for intermediate times, from its regular, circularThe evolution of this vortex configuration is presented in
character. Second, it is no longer constantly expanding. OFig. 3. Again we have pua=1 andm=1.
the contrary, after reaching certain maximal extention it We see in general the same motion as that found in Ref.
starts to decrease down to its complete disappearance, if wé7] except one difference visible in the first frame. In Ref.
draw also frames for larger times. [27] the two straight, antiparallel vortices spring uptata

If we traced the vortex evolution even further in time (this time corresponds to the first frajnes exactly overlap-
(certainly far beyond the applicability of the perturbative ping. No vortices exist fot between & anda. In the case of
method$ we would observe the complicated system of vor- Fig. 3 the vortices in the first frame are slightly shifted and of

tices approaching from “infinity.” different slope. This is a result of the influence of the non-
linear (quantum terms in Egs.(128 and (12b) [38]. We
B. Vortex antivortex recall that the vectorB ®(r ,t) andf ®)(r ,t) are synchronized

for t=0 and not fott=a. This small shift and deformation are
then consequences of the quantum correction to the evolu-
fOr )=(y+ta-i(z+a-t),x+it). (20) tion for 0<t<a.

The second situation corresponds to cdpeof Ref.[27],

066616-4



QUANTUM EFFECTS IN THE EVOLUTION OF.. PHYSICAL REVIEW E 69, 066616(2004)
i E\}\ I UM i

FIG. 5. The appearance of the system of vortices of Fig. 3 seen
now from a viewpoint other than that of Fig. 4 and with thexis
rescaled even more.

their planar character. In the clasical case the vortex lines
arose as the intersection of a plane with a certain surface, and
therefore all vortices have to lie forever in one plane. This is
no longer true in the quantum case.

IV. SUMMARY

In the present paper we analyzed the influence of the non-
FIG. 3. The evolution of the system of two “antiparallel” vorti- linear, quantum terms in the Maxwell equations on the evo-
ces for time betweeh=1 andt=1.55. The units on the axes are lution of vortex lines. By making the comparison with the
such that each frame represents the cube x4dy,z<4. results obtained earlier in the classical c#2é we found
] ) ] that this evolution may be changed in a visible and essential
In Ref. [27] the system of vortices is born &ta, butin  \yay. In the first considered configuration of the constantly
our case they do not overlap and consequently must havgcpanding vortex ring, our calculations show that quantum
appeared earlier. Itis therefore interesting to take a step badgrrections may lead to the deformation and disappearance
in time and see how these vortices arise in the quantum casg this ring. In the second case of two linear and antiparallel
This is shown in Fig. 4. _ _ vortices of the infinite size, which are suddenly created, we
Figure 4 brings to light the essential change: the two in-show what the process of this “creation” looks like, and that
dependent vortices in the cIaSS|ca.I case, or rather vortex anfe two independent vortice® the classical cagaurn out
antivortex, become the two fractions of the same, tightlyys pe just different fractions of the same vortex curve. This
bent, vortex line, when quantum corrections are taken intgjnd of topological change might be expected as a result of
account. Their sudden creation turns out now to be a motioRonlinearity introduced by vacuum polarization.
during which this single vortex line simply enters into the  The present analysis has certain limitations which come
observation region and is being deformed. One might expedioth from its perturbative character and from the “low fre-
this kind of effect — that could be called topological effects quency” approximation which allows one to derive the EH
— together with the smoothing of the evolution, to be theLagrangian. It can, however, serve as a qualitative picture of
most typical ones introduced by the nonlinearity of the quanwhat type of phenomena may be introduced by the quantum
tum equations. To make the effect more visible we present ieffects. One is still very far from constructing the nonpertur-
again in Fig. 5, now seen from another viewpoint. bative solutions of quantum electrodynamics, which would
We would like also to emphasize that the above phenombe deprived of the above limitations, and therefore it might
ena take place for electromagnetic fields weak enough tbe also interesting to consider the evolution of nodial lines in
remain in full agreement with the use of perturbation theorycertain exact nonlinear theory as Born-Infeld electrodynam-
Yet another difference not visible, however, in Figs. 4 andics. However, in this case, one cannot expect to find the
5, is the slight deviation of the system of vortex lines from polynomial solutions as given by Eq4.7) and(21) and only
numerical calculations come into play. This situation is simi-

lar to that in nonlinear quantum mechanics.

At the end we would like to note that although the ob-
served deformation and evolution of vortices have their roots
in the quantum nature of the vacuum, similar structures may

also appear in classical and linear fields by the appropriate
FIG. 4. The appearance of the system of vortices of Fig. 3. Théderturbation of the vortex configurations. Both the deviation
frames correspond to times just beforea. Now the scale on thg ~ of a vortex ring from the planar character as well as the
axis is changed to make the splitting of vortices easily visible:occurrence of a ‘hairpin’-shaped vortex, similar to that of
-4<x,z<4 and -1.5xy<0.5. Fig. 5, are known in optical diffractiof37].
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